Search results for "Projective differential geometry"
showing 5 items of 5 documents
Segre and the Foundations of Geometry: From Complex Projective Geometry to Dual Numbers
2016
In 1886 Corrado Segre wrote to Felix Klein about his intention to study ‘geometrie projective pure’, completing and developing the work of von Staudt. He would continue this research project throughout the whole of his scientific life. In 1889, following a suggestion of Segre, Mario Pieri published his translation of the Geometrie der Lage, and from 1889 to 1890 Segre published four important papers, “Un nuovo campo di ricerche geometriche”, in which he completely developed complex projective geometry, considering new mathematical objects such as antiprojectivities and studying the Hermitian forms from a geometrical point of view with the related ‘hyperalgebraic varieties’. Segre developed …
Projective mappings between projective lattice geometries
1995
The concept of projective lattice geometry generalizes the classical synthetic concept of projective geometry, including projective geometry of modules.
The Influence of H. Grassmann on Italian Projective N-Dimensional Geometry
1996
On May 29, 1883, Corrado Segre took his doctorate in Turin (Torino), under Enrico D’Ovidio’s guidance. His thesis (Segre 1884a,b) was published one year later in the Journal of the local Academy of Science, and after a short time it became a fundamental starting point for the development of Italian projective n-dimensional geometry.
Projective Geometry on Modular Lattices
1995
Publisher Summary This chapter focuses on projective geometry on modular lattices. Incidence and Order are basic concepts for a foundation of modern synthetic geometry. These concepts describe the relative location or containment of geometric objects and have led to different lines of geometry, an incidence-geometric and a lattice-theoretic one. Modularity is one of the fundamental properties of classical projective geometry. It makes projections into join-preserving mappings and yields perspectivities to be (interval) isomorphisms. It is therefore natural that order-theoretic generalizations of projective geometry are based on modular lattices and even more, the theory of modular lattices …
A unified approach to projective lattice geometries
1992
The interest in pursuing projective geometry on modules has led to several lattice theoretic generalizations of the classical synthetic concept of projective geometry on vector spaces.